Previsione fisico-chimica dell'atmosfera. Modellistica per la mitigazione a breve termine.

G.Bonafé¹, I.Gallai¹, D.Giaiotti¹, E.Gianesini¹, A.C.Goglio^{1,2}, F.Montanari¹, A.Petrini¹, F.Stel¹

¹Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia Giulia ²Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici

Mitigazione a breve termine

La **previsione dello stato fisico-chimico** dell'atmosfera è necessaria per orientare interventi di mitigazione a breve termine degli impatti dell'inquinamento atmosferico sulla salute pubblica. Tuttavia prevedere il verificarsi di condizioni favorevoli alla formazione e all'accumulo di inquinanti nei bassi strati è una sfida che mette a dura prova i modelli numerici ad area limitata. In questi casi il segnale sinottico è debole e acquistano particolare rilevanza fenomeni di scala locale: inversioni termiche al suolo, brezze di valle e di mare, föhn.

componente tempi tipici mitigazione a breve termine

Post-processing: filtro di Kalman

Figura 2: L'applicazione di un filtro di Kalman agli scarti tra misure e previsioni riduce nettamente il bias. A sinistra: andamento annuale medio delle previsioni di PM10 (in rosso le osservazioni, in verde FARM senza correzioni, in azzurro con una correzione stagionale, in viola con filtro di Kalman). A destra: andamento giornaliero medio delle previsioni di ozono (in rosso le osservazioni, in verde FARM senza correzione, in blu con filtro di Kalman).

La catena modellistica

A supporto dell'attivazione dei **Piani di Azione Comunali**, a tutela della salute dei cittadini, l'Agenzia Regionale per la Protezione dell'Ambiente del Friuli Venezia Giulia (ARPA-FVG) gestisce dal 2013 una catena modellistica operativa (Fig.1). L'attività di previsione dell'inquinamento atmosferico rientra nel campo di applicazione del Sistema di Gestione per la Qualità ISO 9001 di ARPA-FVG. La catena WRF+FARM è usata, oltre che per la previsione a breve termine, anche per le valutazioni annuali e a supporto della pianificazione regionale sulla qualità dell'aria.

Sensibilità alle emissioni: profili temporali e ripartizione granulometrica

Figura 3: Variazione delle concentrazioni previste di PM2.5 $(\mu g/m^{3}).$ Il profilo emissivo temporale è stato modificato per alcune tipologie di impianti di riscaldamento (caminetti, stufe), spostando l'emissione nelle ore serali. Inoltre è stata corretta la granulometria, attribuendo alla frazione fine la quota prevalente di emissione. Poiché la velocità di deposizione dell'aerosol dipende anche dalla distribuzione granulometrica e dalle condizioni di stabilità atmosferica, questo ha determinato una riduzione della sottostima notturna.

Sensibilità alle condizioni chimiche al contorno

Figura 1: La catena modellistica è composta dal modello meteo WRF-ARW, innestato dalla scala continentale, passando da un dominio intermedio nazionale, fino a un dettaglio di 2 km su un dominio regionale, e dal modello chimico e di trasporto FARM, corredato dai moduli per lo strato limite atmosferico e per la pre-elaborazione delle emissioni, a partire dagli inventari regionale, nazionale ed europeo. Le previsioni sono aggiustate dinamicamente sui dati della rete di monitoraggio, con la tecnica del filtro di Kalman.

Riferimenti bibliografici

Calori, G., Finardi, S., Nanni, A., Radice, P., Riccardo, S., Bertello, A., and Pavone, F. (2008). Long-term air quality assessment: modeling sources contribution and scenarios in Ivrea and Torino areas. Environmental Modeling Assessment, 13(3):329-335.

differences in PM10 maxima (bc_Chimere-bc_Farm) forecast: from 2019-05-16 01:00 to 2019-05-17 00:00

Figura 4: Concentrazioni di PM10 previste ($\mu g/m^3$): confronto tra la corsa sperimentale (condizioni iniziali e al contorno da modello CHIMERE-Italia) e quella operativa (BC da FARM-Italia, IC da proprio restart).

I primi test mostrano una riduzione della sottostima di polveri sottili nella pianura occidentale, accompagnata però da un eccesso generalizzato di ozono; trascurabili gli impatti su NO_2 .

Validazione

Figura 5: Il "target plot" è realizzato secondo le indicazioni del gruppo FAIRMODE, con il pacchetto R dartle (github.com/jobonaf/dartle). Per ciascuna stazione (lettere blu) l'indicatore di qualità soddisfa il criterio prescritto (area verde). Il Modelling Quality Indicator (MQI) raggiunge l'obiettivo di qualità (MQI \leq 1) per ozono (0.55), PM10 (0.86), PM2.5 (0.75) e NO₂ (0.83). risultati si riferiscono alla simulazione off-line del 2016.

- De Lauretis, R., Caputo, A., Cóndor, R. D., Di Cristofaro, E., Gagna, A., Gonella, B., Lena, F., Liburdi, R., Romano, D., Taurino, E., et al. (2009). La disaggregazione a livello provinciale dell'inventario nazionale delle emissioni. Technical report, Institute for Environmental Protection and Research - ISPRA.
- Gariazzo, C., Silibello, C., Finardi, S., Radice, P., Piersanti, A., Calori, G., Cecinato, A., Perrino, C., Nussio, F., Cagnoli, M., et al. (2007). A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmospheric Environment, 41(34):7286-7303.
- Gladich, I., Gallai, I., Giaiotti, D., Mordacchini, G., Palazzo, A., and Stel, F. (2008). Mesoscale heat waves induced by orography. Advances in Science and Research, 2(1):139-143.
- Janssen, S., Guerreiro, C., Viane, P., Georgieva, E., Thunis, P., Cuvelier, K., ... Stocker, J. (2017). Guidance Document on Modelling Quality Objectives and Benchmarking– FAIRMODE WG1.
- Silibello, C., Calori, G., Brusasca, G., Giudici, A., Angelino, E., Fossati, G., Peroni, E., and Buganza, E. (2008). Modelling of PM10 concentrations over Milano urban area using two aerosol modules. Environmental Modelling Software, 23(3):333-343.
- Silibello, C., Finardi, S., and Calori, G. (2006). SURFPRO (SURrface-atmosphere interFace PROcessor) Users guide. Technical report, ARIANET. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G. (2005). A description of the advanced research WRF version 2. Technical report, National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.

Questo lavoro è stato parzialmente realizzato nell'ambito del progetto EU LIFE-PREPAIR (LIFE15 IPE/IT/000013).

LIFE 15 IPE IT 013