

acenzia regionale per la protezione dell'ambiente del friuli venezia giulia

Post-processing di FARM: interpolazione SCM

Stima dei parametri R_h e R_z per ARPMEAS

Giovanni Bonafè Centro Regionale di Modellistica Ambientale, ARPA-FVG

ARPMEAS: panoramica

Cosa fa ARPMFAS?

Create an ADSObin or a netCDF file containing 2/3D fields combining background fields with observed information that may be stored in an ADSO database or in multiple csv files.

Si possono usare vari metodi:

- 1. Observational Data Assimilation [Stauffer and Seaman, 1990]
- 2. Successive Correction Method [Bratseth, 1986]
- 3. Optimal Interpolation [Barth et al., 2008]
- 4. empirical interpolation scheme [Willmott et al., 1985]

Successive Correction Method

- aggiusta iterativamente il campo di background (FARM) con i dati sui punti stazione (uscite del filtro di Kalman)
- ▶ il peso di una stazione i su una cella j è proporzionale a

$$exp\left(\frac{|r_{ij}^2|}{R_h^2}\right) \cdot exp\left(\frac{|\Delta z_{ij}^2|}{R_z^2}\right)$$

dove r_{ij} è la distanza cella–stazione e Δz_{ij} il dislivello e i parametri R_h e R_z sono rispettivamente i raggi di influenza orizzontale e verticale

Stimare i raggi di influenza orizzontale e verticale per ARPMEAS

Misure delle **stazioni di fondo** FVG per il decennio 2008-2017:

- ► PM10 giornaliero
- ► PM10 orario
- ozono
- ► NO₂
- SO₂

Per ogni inquinante:

- 1. per ogni coppia di stazioni è calcolata la correlazione (Pearson)
- ogni coppia di stazioni è rappresentata da un punto definito dalle tre dimensioni

$$(\Delta(h), dist, r)$$

- 3. tramite un fit locale [Cleveland et al., 1992], questa nube di punti è approssimata con una superficie
- 4. si studia l'intersezione di una isolinea significativa su questa superficie (p.es.r_{crit} = 0.8) con gli assi x e y

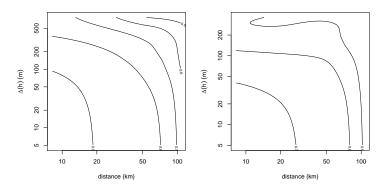


Figura: A sinistra l'analisi sul PM10 giornaliero, a destra sul PM10 orario

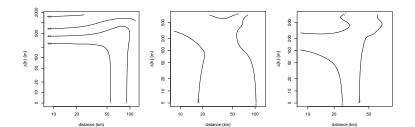


Figura: A sinistra l'analisi per l'ozono, al centro NO₂, a destra SO₂

conclusioni

Risultati dell'analisi di correlazione:

inquinante		$\Delta(h)$	distanza	r _{crit}
		(m)	(km)	-
O ₃	orario	250	60	0.8
PM10	orario	40	30	0.7
PM10	giornaliero	400	70	0.8
NO_2	orario	300	20	0.6
SO_2	orario	100	25	0.2

conclusioni

Risultati dell'analisi di correlazione:

inquinante		$\Delta(h)$	distanza	r _{crit}
		(m)	(km)	-
O ₃	orario	250	60	0.8
PM10	orario	40	30	0.7
PM10	giornaliero	400	70	0.8
NO_2	orario	300	20	0.6
SO_2	orario	100	25	0.2

Per ARpMEAS (metodo SCM) proporrei dunque:

- er / tripl 12/13 (metado 3 er 1) proporter daniquer						
inquinante		R_z	R_h	note		
		(m)	(km)	-		
O ₃	orario	250	60	da analisi precedente, con $r_{crit} = 0.8$		
PM10	giornaliero	400	70	da analisi precedente, con $r_{crit} = 0.8$		
NO_2	orario	40	7	un decimo di PM10, poiché $r_{crit}=0.8$		
				non è raggiunta		
SO ₂	orario	40	7	un decimo di PM10, poiché $r_{crit}=0.8$		
				non è raggiunta		

riferimenti bibliografici I

Barth, A., Azcárate, A. A., Joassin, P., Beckers, J.-M., and Troupin, C. (2008). Introduction to optimal interpolation and variational analysis. *GeoHydrodyn. Envir. Res.*

Bratseth, A. M. (1986).

Statistical interpolation by means of successive corrections.

Tellus A, 38(5):439-447.

Cleveland, W. S., Grosse, E., and Shyu, W. (1992).

Local regression models.

In Chambers, J. M. and Hastie, T. J., editors, *Statistical models in S*, pages 309–376.

Stauffer, D. R. and Seaman, N. L. (1990).

Use of four-dimensional data assimilation in a limited-area mesoscale model, part i: Experiments with synoptic-scale data.

Monthly Weather Review, 118(6):1250-1277.

riferimenti bibliografici II

Willmott, C. J., Rowe, C. M., and Philpot, W. D. (1985).

Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. *The American Cartographer*, 12(1):5–16.