Valutazione della qualità di diverse parametrizzazioni dello Strato Limite Atmosferico implementate nel modello WRF. Un caso studio annuale sul Friuli Venezia Giulia.

Pierluigi Masai

Università degli studi di Trieste ARPA FVG - gruppo CRMA

19/03/2018

- Realizzare delle simulazioni dell'evoluzione dello strato limite atmosferico
- Valutare la qualità di diverse parametrizzazioni dello strato limite atmosferico
- Realizzare una base dati comune con diverse parametrizzazioni dello strato limite atmosferico per un anno intero con risoluzione oraria

Indice

2 II modello WRF

3 Simulazioni

Analisi

5 Conclusioni

Lo strato limite atmosferico (ABL)

- Parte dell'atmosfera direttamente influenzata dalla superficie tramite:
 - a scambi di energia (radiazione, ...)
 - b scambi di materia (vapore,...)
 - c scambi di quantità di moto
- Varia sensibilmente a dipendenza di: ora, latitudine, periodo dell'anno

Scale del moto

Problema della chiusura

- Diverse scale del moto sono interessate
- La dinamica è caotica
- Equazioni non lineari (Navier-Stokes,...)

Problema della chiusura

- Diverse scale del moto sono interessate
- La dinamica è caotica
- Equazioni non lineari (Navier-Stokes,...)

La turbolenza si esprime in termini di fluttuazioni:

$$T = \overline{T} + T' \qquad u = \overline{u} + u'$$
$$E[T] = \overline{T} \qquad E[T'] = 0 \qquad E[u] = \overline{u} \qquad E[u'] = 0$$
$$E[u'T'] \neq 0$$

Problema della chiusura

- Diverse scale del moto sono interessate
- La dinamica è caotica
- Equazioni non lineari (Navier-Stokes,...)

La turbolenza si esprime in termini di fluttuazioni:

$$T = \overline{T} + T' \qquad u = \overline{u} + u'$$
$$E[T] = \overline{T} \qquad E[T'] = 0 \qquad E[u] = \overline{u} \qquad E[u'] = 0$$
$$E[u'T'] \neq 0$$

Bisogna chiudere il sistema! Esistono due approcci:

- Chiusura locale $\longrightarrow E[u'T'](\vec{x}) = f(\vec{x})$
- Chiusura non locale $\longrightarrow E[u'T'](\vec{x}) = f(V)$

4 Analisi

- È un modello numerico ad area limitata adatto ad ambienti di calcolo parallelo
- L'atmosfera è considerata un fluido comprimibile e non idrostatico
- Servono condizioni al contorno e iniziali

4 Analisi

Domini di calcolo

Tempi di calcolo

- Le simulazioni hanno riguardato l'anno 2016 sopra il Friuli Venezia Giulia
- Le simulazioni sono state svolte su un cluster di calcolo ad alte prestazioni utilizzando 160 core distribuiti su 4 nodi
- Ogni simulazione ha richiesto sei giorni di calcolo per un totale di circa 160x6x24x7=161.280 core x h
- Sono stati prodotti più di 1.5 TB di dati, contenenti informazioni sullo strato limite atmosferico tridimensionali a risoluzione oraria per 7 diverse parametrizzazioni

Stazioni

stazione	altezza reale (m)	altezza del modello (m)	latitudine (deg N)	longitudine (deg E)
Udine	91	82	46.036	13.228
Fagagna	147	147	46.102	13.084
Cividale del Friuli	127	116	46.081	13.421
Fossalon di Grado	0	2.5	45.716	13.460
Paloma buoy	0	0	45.617	13.567
Enemonzo	438	420	46.408	12.867

Tabella 1: Altezza e coordinate delle stazioni.

Parametrizzazione	codice	locale	ordine
			di chiusura
improved asymmetric convective model	ACM2	ibrido	1
BouLac	BLC	SÌ	1.5
Grenier-Bretherton-McCaa	GBM	SÌ	1.5
Mellor-Yamada-Janjic	MYJ	SÌ	1.5
Mellor-Yamada-Nakanishi-Niino 3 (MYNN3)	MN3	SÌ	2
Shin-Hong	SHG	ibrido	1.5
Yonsei University	YSU	no	1

Tabella 2: Parametrizzazioni dell'ABL.

Indice

- Lo strato limite atmosferico (ABL)
- 2 II modello WRF

3 Simulazioni

🕘 Analisi

- Temperature
- Venti
- Radiazione
- Precipitazioni

5 Conclusioni

Indice

Lo strato limite atmosferico (ABL)

Il modello WRF 2

3 Simulazioni

Analisi 4

- Temperature
- Venti
- Radiazione
- Precipitazioni

Serie temporale annuale delle temperature a Udine

Diagramma di Taylor annuale per le temperature a Udine

$$E^{\prime 2} = \sigma_f^2 + \sigma_r^2 - 2\sigma_f \sigma_r R$$

Serie temporale delle temperature a Enemonzo in dicembre

Serie temporale delle temperature presso la boa Paloma in luglio

Indice

2 II modello WRF

3 Simulazioni

Analisi

Temperature

Venti

- Radiazione
- Precipitazioni

Kolmogorov-Smirnov test (STZ: UDI - VAR: M10 - T: 20160101 20161231)

M10 [m/s]

Pierluigi Masai Presentazione tesi

Kolmogorov-Smirnov test (STZ: CIV - VAR: M10 - T: 20160101 20161231)

Tipicamente i venti sono sovrastimati, soprattutto i valori alti.

Kolmogorov-Smirnov test (STZ: CIV - VAR: M10 - T: 20160101 20161231)

- Tipicamente i venti sono sovrastimati, soprattutto i valori alti.
- Nessuno schema riesce però a riprodurre brezze orografiche.

Indice

Il modello WRF 2

3 Simulazioni

Analisi

- Temperature
- Venti
- Radiazione
- Precipitazioni

Serie temporale della radiazione a Udine in luglio

measurements ______ MYJ simulations ______ ACM simulations ______ GBM simulations ______ SHG simulations ______ MN3 simulations ______ BLC simulations ______

Serie temporale della radiazione a Udine in luglio

Test di Kolmogorov - Smirnov per la radiazione

Pierluigi Masai

MN3 mostra delle distribuzioni molto aderenti a quelle delle misure a differenza degli altri schemi

Spettro annuale della radiazione

Pierluigi Masai

Presentazione tesi

Indice

Il modello WRF

3 Simulazioni

Analisi

- Temperature
- Venti
- Radiazione
- Precipitazioni

Valori statistici delle precipitazioni (in mm/h)

-											
Precipitations in 2016 at Udine											
	# samples	min	1st perc	25th perc	median	75th perc	99th perc	max	mean	STD	
mea	871	0.1	0.1	0.2	0.8	2.2	16.1	24.1	1.8	2.9	
ACM2	742	0.1	0.1	0.1	0.4	1.4	11.6	27.0	1.3	2.3	
BLC	713	0.1	0.1	0.1	0.4	1.2	10.4	24.3	1.1	2.1	
GBM	566	0.1	0.1	0.1	0.3	1.0	8.7	21.5	1.0	1.8	
MN3	1732	0.1	0.1	0.1	0.4	1.3	14.9	26.8	1.3	2.6	
MYJ	602	0.1	0.1	0.1	0.3	1.1	13.7	31.6	1.1	2.6	
ShG	718	0.1	0.1	0.1	0.3	1.0	12.2	27.1	1.1	2.3	
YSU	602	0.1	0.1	0.1	0.4	1.2	9.9	44.8	1.2	2.9	

Precipitations in 2016 at Cividale del Friuli										
	# samples	min	1st perc	25th perc	median	75th perc	99th perc	max	mean	STD
mea	959	0.1	0.1	0.2	0.6	1.9	11.9	28.1	1.6	2.6
ACM2	798	0.1	0.1	0.1	0.4	1.5	14.8	22.8	1.4	2.6
BLC	740	0.1	0.1	0.1	0.4	1.2	14.6	29.4	1.4	2.8
GBM	650	0.1	0.1	0.1	0.4	1.1	12.2	26.5	1.1	2.4
MN3	2036	0.1	0.1	0.1	0.4	1.3	15.6	40.1	1.4	3.1
MYJ	721	0.1	0.1	0.1	0.3	1.1	12.9	23.0	1.1	2.3
ShG	765	0.1	0.1	0.1	0.3	1.2	10.6	22.6	1.2	2.3
YSU	669	0.1	0.1	0.1	0.4	1.2	14.6	45.8	1.3	3.6

Precipitations in 2016 at Fagagna										
	# samples	min	1st perc	25th perc	median	75th perc	99th perc	max	mean	STD
mea	936	0.1	0.1	0.2	0.8	2.2	12.5	21.2	1.8	2.6
ACM2	773	0.1	0.1	0.2	0.6	1.5	13.0	28.3	1.5	2.6
BLC	750	0.1	0.1	0.2	0.5	1.3	12.8	22.8	1.3	2.4
GBM	607	0.1	0.1	0.1	0.3	1.0	12.0	28.7	1.0	2.3
MN3	925	0.1	0.1	0.1	0.4	1.2	15.8	38.7	1.3	3.1
MYJ	669	0.1	0.1	0.1	0.4	1.3	13.6	38.4	1.4	3.2
ShG	733	0.1	0.1	0.1	0.4	1.3	11.2	26.9	1.2	2.2
YSU	667	0.1	0.1	0.1	0.4	1.2	14.6	25.0	1.1	2.4

Valori statistici delle precipitazioni (in mm/h)

Precipitations in 2016 at Fossalon di Grado										
	# samples	min	1st perc	25th perc	median	75th perc	99th perc	max	mean	STD
mea	781	0.1	0.1	0.2	0.5	1.4	12.9	23.0	1.4	2.6
ACM2	669	0.1	0.1	0.1	0.4	1.0	12.9	25.0	1.2	2.4
BLC	495	0.1	0.1	0.2	0.4	1.0	9.1	18.0	1.0	1.7
GBM	456	0.1	0.1	0.1	0.4	1.0	7.4	22.3	0.9	1.8
MN3	1152	0.1	0.1	0.1	0.3	1.1	18.4	29.7	1.2	2.8
MYJ	465	0.1	0.1	0.1	0.4	1.0	7.8	21.4	0.9	1.7
ShG	574	0.1	0.1	0.1	0.3	1.0	7.4	35.2	0.9	2.1
YSU	513	0.1	0.1	0.1	0.4	1.1	8.0	26.3	1.0	2.1

Precipitations in 2016 at Enemonzo										
	# samples	min	1st perc	25th perc	median	75th perc	99th perc	max	mean	STD
mea	1177	0.1	0.1	0.2	0.6	1.8	16.9	52.9	1.6	3.4
ACM2	804	0.1	0.1	0.2	0.6	1.7	13.2	24.1	1.4	2.5
BLC	848	0.1	0.1	0.2	0.5	1.4	11.2	23.0	1.3	2.3
GBM	655	0.1	0.1	0.2	0.5	1.5	9.0	15.8	1.3	1.9
MN3	810	0.1	0.1	0.2	0.4	1.2	13.6	27.4	1.3	2.5
MYJ	697	0.1	0.1	0.2	0.5	1.5	8.2	17.3	1.2	1.9
ShG	774	0.1	0.1	0.2	0.6	1.9	10.5	25.9	1.5	2.3
YSU	768	0.1	0.1	0.2	0.5	1.4	12.2	26.1	1.4	2.4

Indice

- Lo strato limite atmosferico (ABL)
- 2 II modello WRF
- 3 Simulazioni

🕘 Analisi

- Temperature
- Venti
- Radiazione
- Precipitazioni

- Il modello WRF riesce a riprodurre accuratamente gli effetti dei fenomeni sinottici e delle variazioni stagionali sull'evoluzione dello strato limite atmosferico
- La qualità delle simulazioni nella regione montuosa è limitata dalla risoluzione dell'orografia
- La descrizione della regione marina è condizionata dagli scambi di calore con la superficie
- La parametrizzazione MN3 risulta fredda e piovosa
- La parametrizzazione ACM2 si distingue per intensi rimescolamenti verticali
- Le restanti parametrizzazioni si equivalgono a meno di casi peculiari

- Le simulazioni effettuate arricchiscono i database dell'ARPA FVG
- Analoghe analisi saranno condotte su altre variabili (e.g. rapporto di mescolanza)
- Come suggerito dall'idea del quarto paradigma molta informazione si cela nelle simulazioni

Grazie per l'attenzione!

Cluster di calcolo

Nesting capability:

Sistema di osservazioni globale

L'ordine di chiusura è determinato dal massimo grado delle perturbazioni parametrizzate:

- E[u'v'] o $E[u'^2] \longrightarrow$ secondo ordine
- $E[u'v'^2]$ o $E[u'^3] \longrightarrow$ terzo ordine
- $E[u'^2v'w']$ o $E[u'^4] \longrightarrow$ quarto ordine