

The SHERPA approach

ARPA FVG – CRMA Centro Regionale di Modellistica Ambientale crma@arpa.fvg.it

SHERPA Screening for High Emission Reduction Potential on Air

Input data provided by INERIS

Software developed by TerrAria under the Contract Procedure no. JRC/IPR/2014/H.2/0023/NC

Anna Chiara Goglio Palmanova, Aprile 2017

SHERPA

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

Introduction

Motivations

Screening for High Emission Reduction Potentials on Air quality

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics
- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

CRMA

SHERPA

SRR models

ARP

The goal of the SRR is to mimic an AQM to calculate as quickly as possible the effect of emission reductions on concentration levels

CRMA

SHERPA

SRR models

ARPA

The goal of the SRR is to mimic an AQM to calculate as quickly as possible the effect of emission reductions on concentration levels

AQM - SRR

<u>AQM</u> (Integrated Assessment Modeling frame)

- ✓ High accuracy
- \checkmark High temporal resolution
- \checkmark High spatial resolution
- Long calculation time (hours for 1yr simulations)
- ✗ Interactivity not allowed

SRR (SHERPA, GAINS, AERIS, RIAT+)

•

٠

SRR Methodology

Emissions

Slide 5/26

SRR models

SRR Validation

SRR models

SRR Validation

- ✓ Speed
- ✓ Spatial flexibility
- ✓ Light set-up
- ✓ Robustness
- ✓ Accuracy

Source-aggregations (fixed or sliding)

Cell-to-cell relationships

Slide 7/26

Good comparability between SRR and AQM results (dependence on training AQMs)

SRR:	Description:	SPEED	SPATIAL FLEXIBILITY	LIGHT SET-UP	ROBUSTNESS
GAINS	S-aggregation in terms of countries Assumes linearity	Т	F	Т	Т
AERIS	S-aggregation in specific sectors	Т	F	Т	Т
RIAT+	S-aggregation in four large quadrants Neural network	Т	т	F	т
Multi-ring	sliding S-aggregation (rings) Assumes linearity	Т	т	Т	F
Bell-shape (SHERPA)	Cell-to-cell relationship distance weighted Assumes linearity	Т	Т	Т	Т

Accuracy

 \checkmark

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

★ Strong dependence on training model

✗ Non linearities neglected

✗ Directionality ignored

★ Geographical complexities not accounted

INERIS: CHIMERE (EU 7km x7 km res) + ECMWF 2010 + EMISSIONS 2009

bias in windy areas

bias in mountain areas

CRMA

- **Delta-SRR** better reproduce AQMs results in respect of absolute-values-SRR
- For long term indicators (yearly average) the delta-SRR can be approximated accurately with a linear function

$$\Delta C = f(\Delta E)$$

$$\Delta C_{j} = \sum_{p}^{P} \sum_{i}^{N} a^{p}{}_{ij} \Delta E_{j}{}^{p}$$

$$p = \text{precursors}$$

$$i = \text{source cells}$$

$$j = \text{receptor cells}$$

Slide 9/26

SOURCE AGGREGATION

p = precursors
k = source aggregations
j = receptor cells

SHERPA model

SOURCE AGGREGATION

Multi-ring approach

d.o.f. = $(N_A \times P) - (N_W \times N_{SC})$

N_A $\Delta C_j^{\rm SC(1)} =$ $\left[\frac{a^{p}}{kj} \Delta E_{k,j}^{SC(1)p} \right]$ $p \frac{k}{P} \frac{N_A}{N_A}$ $a^{p}_{kj} \Delta E_{k,j+1}^{\mathrm{SC}(1)} p$ $\Delta C_{j+1}^{\rm SC(1)} =$ k p p = precursorsk =source aggregations j = receptor cells SC = scenario

RECEPTOR WINDOWS

Slide 11/26

 $d.o.f. = (N_A \times P) - (N_W \times N_{SC})$

BUT

- Lack of robustness (small windows)
- Low accuracy (large windows)

Slid<u>e 11/26</u>

CELL-TO-CELL RELATIONSHIP DISTANCE WEIGHTED

Slide 13/26

CELL-TO-CELL RELATIONSHIP DISTANCE WEIGHTED

$a^{p}{}_{ij} = \propto^{p}{}_{j} (1 + d_{ij})^{-\omega^{p}{}_{j}}$ \bigcup $\Delta C_{j} = \sum_{p}^{P} \propto^{p}{}_{j} \sum_{i}^{N} (1 + d_{ij})^{-\omega^{p}{}_{j}} \Delta E_{i}^{p}$ $\longrightarrow \text{ d.o.f.} = 2 \times P$

BUT

★ Directionality ignored

bias in windy areas

Geographical complexities not accounted

bias in mountain areas

CELL-TO-CELL RELATIONSHIP DISTANCE WEIGHTED

- ω \downarrow Low spatial variability
 - ↑ High precursor dependence
- α \uparrow High spatial variability
 - ↑ High precursor dependence

Slide 13/26

 $\Delta C_j = \sum_{p}^{P} \propto^p_j \sum_{i}^{N} (1 + d_{ij})^{-\omega^p_j} \Delta E_i^p$

STEP 1

Precursors treated independentely

Unique R-Window (or wind speed based, thershold 0.5 m/s)

Least square estimation between emission and concentration changes

STEP 1

Precursors treated independentely

Unique R-Window (or wind speed based, thershold 0.5 m/s)

Least square estimation between emission and concentration changes

STEP 2

Emission weighted average delta calculation

All training scenario at the same time (all precursors reduced contemporarily)

Multi linear regression between emission weighted average and concentration deltas

 $\Delta C_j = \sum \propto^p \sum_i (1 + d_{ij})^{-\omega^p} \Delta E_i^p$ $\Delta C_i^{p} = \propto^p_i \sum_{i=1}^N (1 + d_{ii})^{-\omega^p_i} \Delta E_i^{p}$ $\forall p$ $\Delta C_i^{\ p} = \propto^p \sum_i^N (1 + d_{ii})^{-\omega^p} \Delta E_i^{\ p}$ $\forall p \forall j$ \longrightarrow d.o.f. = 2 ω^p , α^p $\forall j$ $\Delta \bar{E}_i^{\ p} = \sum_i^N (1 + d_{ij})^{-\omega^p} \Delta E_i^{\ p}$ $\forall p$ $\Delta C_i = \sum_{p}^{P} \propto^{p} i \Delta \overline{E}_i^{p}$ Slide 14/26

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics
- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

SHERPA (graphical user interfaces - GUIs - and operation processes) is developed on J2SE platform (java 2 standard edition). SHERPA data pre- and post- processing is managed by FORTRAN executables. The core computation module uses PYTHON executable. SHERPA GIS interface is implemented using NASA World Wind. SHERPA is entirely open-source.

SHERPA is developed for Windows operating systems.

The minimum hardware requirements are:

- CPU, no request, the current standard (3 3.50GHz) will guarantee an acceptable computation time
- RAM: minimum 2GB
- Disk storage: minimum 2GB (each simulation will require additional disk space)
- Database (input) and output \longrightarrow netCDF, txt

Slide 16/26

SHERPA SHERPA tool

Module SOURCE APPORTIONMENT

INPUT

NUTS:

- NUTS0: country areas (e.g. Italy)
- NUTS1: major socio-economic regions (e.g. Nord-Est)
- NUTS2: basic regions for the application of regional policies (e.g. FVG)

Off Glob

MS8

MS9

MS10

ALL

V

MS7

MS6

NUTS3: small regions for specific diagnoses (e.g. Udine)

SNAP Macrosectors:

- MS1: combustion in energy industries
- MS2: residential combustion
- MS3: combustion in manufacturing industry
- MS4: production processes

Back

- MS5: fuels extraction and distribution
- MS6: solvent use
- MS7: road transport •
- MS8:other transports
- MS9: Waste treatment
- MS10: Agricolture

AQ Indexes:

Module SOURCE APPORTIONMENT

SHERPA

SHERPA tool

ARPA

Slide 18/26

SHERPA tool Module GOVERNANCE CONTROL AREA

SHERPA

ARPA

FVG

INPUT

OUTPUT (under significance threshold (1%)

Slide 21/26

OUTPUT (under significance threshold (1%)

Emissions database (INPUT)

Module SCENARIO ASSESSMENT

SHERPA

SHERPA tool

ARPA

FNG

<u>INPUT</u>

Module SCENARIO ASSESSMENT

SHERPA

SHERPA tool

ARPA

CRMA

F\G **OUTPUT** SPATIAL RESOLUTION: gridded or aggregated in nuts (spatial average, population Concentrations or emissions (precursor, macrosector) maps weighted, average over threshold) Scenario Assessment (NUTS) - NO2 - Annual Save Back Help Threshold Data Precursor Macrosector Aggregation method AQI Gridded Set max Max OK Compute map Delta % NUTS Emission Layer options . N02 32.17% 24.13 % 16.08 % **HOW MUCH** impacts? 8.04 % 0% 00 Km Slide 23/26 Altitude 8.829 km **Off Globe** Downloading

(cost/effectiveness analysis)

The system will automatically create all the required input files for the RIAT+ tool:

- Domain file;
- Mapping file;
- Emission inventory files;
- GAINS measures database;
- Source-Receptor functions.

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

Conclusions

SHERPA represents a challenging **user-friendly** tool for the assessment of regional air quality plans

- Bell-shape methodology provides a good compromise between accuracy and speed, spatial flexibility and light set-up
- But it shows **biases in windy and mountainous areas**:

Is the SHERPA tool suited for analysis in our area?

Index

- 1. Introduction
 - Motivations
 - Tasks
- 2. Source-Receptor Relationship models
 - SRR Purpose
 - SRR Methodology
 - SRR Validation
 - SRR Characteristics
- 3. SHERPA model
 - SHERPA Characteristics
 - Linear Approaches:
 - Multi-ring Approach
 - Bell-shape Approach (SHERPA)
 - SHERPA Algorithm

- 4. SHERPA tool
 - Software specifications and hardware requirements
 - SHERPA Modules
 - Source apportionment
 - Governance control area
 - Scenario assessment
 - First Guess RIAT+
- 5. Conclusions
- 6. References

References

- Adding spatial flexibility to source-receptor relationships for air quality modeling, *E. Pisoni et al.*, Environmental Modelling & Software 90 (2017) 68e77
- On the design and assessment of regional air quality plans: The SHERPA approach, *P. Thunis et al.*, Journal of Environmental Management 183 (2016) 952e958
- SHERPA User Guide, Version 1.5, April 2016
- SHERPA: a screening tool to support air quality plans, (slide) *P. Thunis et al.*