Impact of air masses origin and trajectory on atmospheric phenomena

Arianna Miniussi, Dario B. Giaiotti
feat Fulvio Stel

Politechnic of Turin (Italy)
Regional Agency for Environmental Protection of Friuli Venezia Giulia (Italy)

(fulvio.stel@arpa.fvg.it)
Conclusions

- High (relatively) SO2 concentrations in Friuli Venezia Giulia are associated to air masses coming from eastern Europe.

- High PM10 concentrations in Friuli Venezia Giulia are associated to air masses coming from west (Po Valley) and in the previous days air masses have to remain stick to the ground and be subject to subsidence.

- High O3 concentrations do not have a privileged direction of air masses, but air masses have to remain relatively stick to the ground for a long time.

- Heavy rain episodes are characterized by the “Adriatic” alley direction in the previous days.
The study area (where Friuli Venezia Giulia is)
The study area

Heavy rain events

Pollution episodes (SO2, PM10, O3)
Materials and methods

- Significant episodes chosen on a daily basis
- Episodes spanning from 2005 up to 2014
- Air masses trajectories determined through the HYSPLIT model (http://www.arl.noaa.gov/HYSPLIT_info.php)
- Meteorological data used obtained from GDAS archive (https://ready.arl.noaa.gov/gdas1.php)
- Tree 120 hours backward trajectories (SFC, 500 and 1000 m ASL) centered at 12:00 UTC in the day of the event
Backward trajectories that were at SURFACE level at the day of the event
Backward trajectories that were at 500 m above mean level at the day of the event
Backward trajectories that were at 1000 m above surface level at the day of the event
Largest dots indicate the position of air mass one day before the event
Smallest dots indicate the position of air mass five days before the event
SO2

Left panel – Air masses average vertical height (0 is the day of the event)

Left panel - Surface air mass average vertical height and standard deviation
Backward trajectories that were at SURFACE level at the day of the event
Backward trajectories that were at 1000 m above surface level at the day of the event
Backward trajectories that were at 1000 m above surface level at the day of the event
Largest dots indicate the position of air mass one day before the event.
Smallest dots indicate the position of air mass five days before the event.
Left panel – Air masses average vertical height (0 is the day of the event)

Left panel - Surface air mass average vertical height and standard deviation
Backward trajectories that were at SURFACE level at the day of the event
Backward trajectories that were at 500 m above mean level at the day of the event
Backward trajectories that were at 1000 m above surface level at the day of the event
Largest dots indicate the position of air mass one day before the event
Smallest dots indicate the position of air mass five days before the event
Left panel – Air masses average vertical height (0 is the day of the event)

Left panel - Surface air mass average vertical height and standard deviation
Heavy rain

Backward trajectories that were at SURFACE level at the day of the event
Heavy rain

Backward trajectories that were at 500 m above mean level at the day of the event
Heavy rain

Backward trajectories that were at 1000 m above surface level at the day of the event
Heavy rain

Largest dots indicate the position of air mass one day before the event
Smallest dots indicate the position of air mass five days before the event
Heavy rain

Left panel – Air masses average vertical height (0 is the day of the event)
Left panel - Surface air mass average vertical height and standard deviation
In general

• High (relatively) SO_2 concentrations are associated to air masses coming from eastern Europe

• High PM_{10} concentrations are associated to air masses coming from west (Po Valley) and in the previous days air masses have to remain stick to the ground and be subject to subsidence

• High O_3 concentrations do not have a privileged direction of air masses, but air masses have to remain relatively stick to the ground for a long time

• Heavy rain episodes are characterized by the “Adriatic” alley direction in the previous days
Thanks for your attention

Благодаря